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Abstract-Steady laminar and transient oscillatory mixed convection of a low Prandtl number fluid in a 
symmetrically heated vertical plane channel subject to an opposing buoyancy is investigated by solving the 
transient two-dimensional flow and energy equations. Results are particularly presented to illustrate the 
effects of buoyancy strength Gr/Re’ and Reynolds number Re. At a fixed Reynolds number, the flow is 
steady and unidirectional for a long time for a very small Gr/Re’. At a higher Gr/Re*, steady flow reversal 
is noted. An oscillatory flow with a single fundamental frequency is found when Gr/Re* exceeds a critical 
value (which is about - 1.2 with Re = 500). Flow asymmetry appears at a certain time instant. Further 
increasing the opposing buoyancy, a secondary fundamental frequency sets in and the flow is quasi- 
periodic. The effect of increasing the Reynolds number is to stabilize the flow. Besides, in the initial transient 
the larger Reynolds number results in a longer duration in which a number of symmetric cells oscillate 
longitudinally. Finally, the transition of various flow patterns can be clearly distinguished by noting a 

sudden change of the average Nusselt numbers. 

INTRODUCTION 

EXTENSIVE studies have been carried out in the litera- 
ture for the mixed convection of air and water in both 
external and internal flows, as evident from the up- 
to-date reviews from Chen [I], Aung [2] and Gebhart 
et al. [3]. However, the mixed convection in low 
Prandtl number liquid metal flow is rarely inves- 
tigated, in spite of its importance in the casting pro- 
cesses [4] and liquid metal-cooled fast breeder nuclear 
reactors [S]. This study intends to explore the detailed 

flow and thermal characteristics of a mixed convective 
liquid metal flow in a vertical plane channel under 
symmetric heating. 

Early studies on the mixed convection in a vertical 
flat duct mainly focused on the buoyancy induced 
velocity distortion and the associated heat transfer in 
the steady laminar fully developed and developing 
flows. These include the results from Tao [6], Quin- 
tiere and Mueller [7], Yao [8], Chow et al. [9] and 
Aung and Worku [lo, 111. The reverse of a vertical 
forced channel flow by the strong buoyancy was exam- 
ined by Cebeci et al. [12], Aung and Worku [ 131, 
Lavine [14], Ingham et al. [15-181, and Lavine et 

al. [19]. The reversed flow is known to be relatively 
unstable due to the existence of inflection points in 
the velocity profile, according to the boundary layer 
instability [20]. Unsteady mixed convection in a ver- 
tical pipe was treated by Shaddy [21]. Experimental 
investigation on the instability and transition of the 
mixed convection in vertical tube was conducted by 
Scheele et al. [22], Scheele and Hanratty [23], 
Lawrence and Chato [24], and Zeldin and Schmidt 

[25]. The above literature review indicates that mixed 
convection in air and water receives nearly all the 
attention. 

Buoyancy-induced convection in a low-Prandtl 
fluid contained in enclosed cavities is found to be 
rather unstable and has been studied by a number of 

research groups such as Hurle et al. [26], Knuteson et 
al. [27] and Muller [28], to name just a few. There are 
only a few studies in the open literature dealing with 
the mixed convection channel flow of a low Prandtl 

number fluid. 
In the present study, a detailed numerical simul- 

ation will be performed to unravel the steady and 

oscillatory flow and thermal characteristics in a forced 
flow of liquid metal through a vertical plane channel 
modified by an opposing buoyancy. The physical 
model under consideration and the coordinates 
chosen are depicted in Fig. 1. As shown in the figure, 
a parallel plane channel of wall thickness 6 and inter- 
plate spacing b is oriented along the gravitational 
direction. The dimension of the channel walls per- 
pendicular to the x-y plane is very large so that the 
flow can be considered as two-dimensional. A down- 
ward flow enters the channel at temperature T, in the 
far upstream region, x + - co. Initially, the flow and 
the confining walls are at the same uniform tem- 
perature T,. At time = 0, uniform and equal heat 
fluxes are respectively imposed on the left and right 
walls over the finite length (0 < x < 1) and maintained 
at these levels thereafter. Upstream and downstream 
of the heated section (x < 0 or x > I) the channel is 
well insulated. The flow is assumed to reach the fully 
developed state prior to moving into the region of 
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NOMENCLATURE 

A wall-to-fluid heat capacity ratio .x, Y Cartesian coordinates 
b channel width X, Y dimensionless Cartesian coordinates. 
2 body force 
C complex wave speed 

Cl2 specific heat at constant pressure Greek symbols 

9 gravitational acceleration thermal diffusivity 

Gr Grashof number ; coefficient of volumetric thermal 

h convection heat transfer coefficient expansion 
k thermal conductivity of fluid 6 thickness of the channel wall 

k, wave number AX grid size in X-direction 

1, L dimensional and dimensionless lengths of A7 time interval 

the directly heated section, respectively 0 dimensionless temperature 

NU Nusselt number o^ dimensionless temperature disturbance 

NU average Nusselt number v kinematic viscosity 

NU effective heat transfer coefficient P density 

p, P dimensional and dimensionless 7 dimensionless time. 

pressures, respectively 

Pltl dynamic (motion) pressure 
Pe Peclet number, Re Pr Subscripts 

Pr Prandtl number b bulk quantity or basic flow quantity 

q” heat flux e entrance plane 

Re Reynolds number i,_i indices in x- and y-directions 

t time L on the left wall 

T temperature R on the right wall 

IA, U dimensional and dimensionless velocity W on wall 

in x-direction, respectively X local quantity. 

U, V dimensional and dimensionless velocity 
in y-direction, respectively 

? velocity vector Superscripts 

P dimensionless velocity disturbance in n time step 

Y-direction * predicted value. 

significant heat transfer. Only buoyancy opposing 
flows will be examined since flow reversal frequently 
appears under this situation. Particular attention is 

paid to examining the unsteady oscillatory flow and 
heat transfer characteristics during the development 
of recirculating flow. 

MATHEMATICAL FORMULATION 

(4) 

and the associated initial and boundary conditions 
are 

Basic nondimensional equations for the unsteady 
two-dimensional combined forced and free con- forr=O 

vection of a Boussinesq fluid through a vertical chan- 
nel with the possible presence of flow recirculation are 

at.%+-m, U=6(Y-Y*), V=O, 0=0 

(5) 
au av jx+ry=o (l) forz>O 

atX+-co, U=6(Y-Y*), V=O, O=O 

(6) 

+&[gi+gq (2) atX-+m, -i&=0, V=O, 8=0 
ax (7) 



fully-developed ue,Te 

FIG. I. Schematic diagram of the physical system. 

at Y = 0, u= v=o, 
computed for velocity field ignoring the pressure 
gradient, 

a6 ae 1 forO<X<L 
Az-ay= 0 otherwise (8) jT*_p 

~ +(@V)% &V’d._i = 0 (14) 
AZ 

at Y= 1, u= v=o, 

1 forO<X<L 
where i is the buoyancy force. Then, the provisional 

ae de 
Axfar= 

velocity field c* is corrected by including the pressure 
0 otherwise (9) effect and by enforcing the mass conservation at time 

Note that in the opposing mixed convection the par- 
stepn+l 

ameter Gr/Re*, which signifies the relative strength of F+t_Q* 

the buoyancy to inertia forces, is negative. The above AZ 
+vP”+’ = 0 (15) 

equations are written in terms of the following non- 

dimensional variables : and 

X = x/b, Y = y/b, L = l/b V.p+’ CO. (16) 

U = u/tie, V = u/ii,, T = t/(b/&) 

0 = (T- T,)/(q”b/k), P = p/pi: 

Re = &b/v, Gr = g/3qGb4/(kv2) 

pwcpw6 Re Pr. Pr = v/a, A = ~ 
pcpb 

In discretizing the above equations, centered 
In the above formulation, heat capacity in the channel difference is used to approximate all the derivatives 
wall is included in equations (8) and (9) because it is except the convective terms. To enhance numerical 
important in the transient heat transfer processes, as stability and to yield accurate results for the com- 
evident from the studies of Succec [29], Lin and Kuo plicate flow and thermal evolution studied here, a 
[30] and Joshi [31] for transient forced and free con- third-order upwind scheme developed by Kawamura 
vection. The local and space-averaged Nusselt num- et al. [34] is employed to discretize these convective 
bers on the left and right channel walls can be evalu- terms. For instance, in the X-direction momentum 
ated from the equations equation, one of the nonlinear terms is written as 

Substituting equation (16) into equation (15) yields 
the Poisson equation for pressure 

V*p”+’ = _ ;rV. p*. (17) 

(10) 

ar 

Nu,+ -k& y=o b I ae 
T,-T, i - e ay d (11) 

k!? 
aY y=h b 1 atI 

T,--T, k 8aY y=,’ (12) 

and 

- s Nu = ; 

L 

Nu dX. (13) 
0 
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SOLUTION METHOD 

Since the flow governed by equations (l)-(4) is 
known to be parabolic in time but elliptic in space, 
the solution for the problem can only be marched in 
time, and iterative procedures must be employed to 

obtain the solution in the spatial domain. The pro- 
jection method developed by Chorin [32] and Temam 
[33] was chosen to numerically solve the time-depen- 
dent governing equations in their primitive form on a 
staggered grid. This fractional step method consists 
of two steps. First, a provisional value 3* is explicitly 
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The first-order Euler explicit scheme was employed 
since it was easy to implement. It has a much lower 
computational cost per time step, and requires much 
less computer memory allocation than any equivalent 
implicit implementation. We also found that the first- 
order scheme was su~ciently accurate to resolve the 
smallest physical time scale. The stability of the 
scheme, limited by the requirement that the Courant 
number be less than unity (Anderson et ul. [35J), was 
found to be governed by the grid spacing normal to 
the confined wails. The step selected to comply with 
the above stability limitation was smaller than that 
required to resolve the highest frequency which 
appears in the Aow considered. The sequence of 
numerical operations are as follows : 

(1) explicitly calculate G* from equation (14) ; 
(2) solve the pressure equation (17) for P”+ ’ by the 

Fast Fourier Transform (FFT) method (Wilhelmson 
and Erichsen [36]). This direct solution method is 
relatively accurate and, in fact, it was noted that the 
mass imbalance for every computational cell com- 
pared with the inlet mass flowrate is all below IO-‘. 
Furthermore, the residual for each discretized equa- 
tion for each node is found to be less than lo-’ ; 

(3) explicitly calculate the desired velocity field at 
the new time step, p+ ‘, from equation (15). 

Various schemes were used to discretize the energy 
equation. The power-law scheme developed by Patan- 
kar f37] was found to be most satisfactory with the 
time derivative treated implicitly. By employing the 
Conjugate Gradient Squared method (Sonneveld 
[38]) to solve the resulting finite-difference equations, 
the temperature field at every time step can be cal- 
culated with a very high accuracy. In the computation, 
the convergence criterion that the relative error in 
temperature between two consecutive iterations is 
below IO- a and the residual for the discretized energy 
equation is below IO _ ' are enforced for every node at 
every time step. This method of solving the energy is 
further supported by noting that the overall energy 
balance for the channel is satisfied within 0.1%. 

Due to the elliptical nature of the Bow, an extended 
computational domain was employed, including the 
directly heated section (0 < X G 15) and the insulated 
sections immediately upstream and downstream of it, 
as depicted in Fig. 1. The extended domains in the 
insulated sections must be long enough so that the 
obtained solution is independent of their sizes. In the 
program test, it was observed that over the ranges 
of the governing parameters to be considered, the 
upstream and downstream extended regions should 
each have length L and 215. A uniform grid system is 
placed in the whole computational domain. In the X- 

Table 1. Comparison of local velocity U, temperature 0 and 
average Nusselt number fluctuations and frequency for 
various grid arrangements at Y = 0.141 for Re = 5OC 

and GriRe'= -6 

Grids 
x 280x32 360x32 420x32 360x40 

_____. 
5 -1.149t -1.389 - 1.438 -1.391 

U 10 
1.5265: 1.887 I .950 I .896 

-1.130 - I .279 -1.377 ‘- 1.297 
1.997 2.270 2.378 2.282 

5 2.162 2.136 2.110 2.137 

H 
2.440 2.419 2.395 2.420 

10 4.080 4.053 4.042 4.054 
4.160 4.143 4.133 4.144 

- 

NU 
0.540 0.553 0.558 0.553 
0.562 0.571 0.575 0.572 

Frequency 0.345 0.360 0.368 0.357 
_ 

t, $ : minimum and maximum values during a cycle. 

direction, 360 grid lines are used, while in the Y- 
direction, 32 grid lines are employed. The com- 
putation is started immediately after the sudden impo- 
sition of the heat fluxes on the channel wall at r = 0. 
It is terminated when the steady state is reached, which 
is detected by the relative changes in U, V and 0 over 
1000 time steps being less than lo- ‘. For the cases 
without a steady state at high GrlRe2, the basic equa- 
tions are integrated until the statistical characteristics 
are well developed. 

Considering the complicated fluid flow to be simu- 
lated here, a stringent program test is conducted. First, 
the predicted velocity profile at the exit of the com- 
putational domain (X = 3L) where the buoyancy 
exhibits negligible effects agrees with the exact fully 
developed velocity profile U = 6( Y- Y*) to the six 
digits after the decimal point. Then, it is observed that 
the predicted steady fully developed velocity profiles 
for a long heated section (L 2 50) differ from the 
exact solution of Lavine [ 141 by less than 1%. Finally, 
a grid test is carried out. The results for a typical case 
are listed in Table 1. Reasonable agreement between 
the results for U and 0 at several locations and the 
average Nusselt number and oscillatory frequency 
from various grids is noted. The 360 x 32 grid is there- 
fore considered to be suitable for the present study 
and will be used in the subsequent computations. For 
the sake of accuracy, 420 x 32 grid lines are used for 
the high buoyancy cases. Regarding the effect of the 
time step, only a small difference in the predicted 
results is found when the time step is reduced by a half. 
The above program test indicates that the adopted 
solution procedures are suitable for the present study. 

ONSET OF INSTABILITY 

To investigate the flow stability mentioned earlier, a 
linear stability analysis was carried out for the limiting 
case of the heated section being relatively long. In this 
limiting case, the analytic fully developed velocity and 
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temperature distributions given by Lavine [14] can be 
used for the basic flow (U,, V, and 0,). The pro- 
cedures adopted here resemble those used by White 
[20]. The disturbance equation is obtained by sub- 
tracting the equations for the basic flow from the 
instantaneous flow equations, and then elminating the 
pressure from the resulting equations. Neglecting the 
nonlinear terms and assuming the disturbances as 
two-dimensional with the general from 

(p’ = f#~( Y) exp (ik, (X-CT)) (19) 

where i, k, and c are, respectively, the square root of 
- 1, wave number and complex wave speed, one 
arrives at the equations governing the amplitudes of 
the Y-component disturbed velocity P and tem- 
perature Q 

=ick, &(II:p-$) (20) 

^ de, . Pe d0, 

vPedy +‘k, dX 
- !?! +k$ 

dY2 

+ik,U, Pe@==ik,cPefj (21) 

subject to the boundary conditions 

P(O) = ‘ci(l) = dP(0) dPW 0 -=-= 

dY dY 

d&O) d&l) o 

7=-= * 
(22) 

The above eigenvalue problem was solved by express- 
ing P and d as the Nth degree Chebychev polynomials 
and then discretize the equations by the collocation 
method (Canuto et al. 1391). The resuhing eigenmatrix 
is solved by the IMSL subroutine EIGZC. The above 
procedure was first tested for the limiting case of the 
Orr-Sommerfeld equation (Orszag [40]). Excellent 
agreement is noted. 

The predicted neutral stability curves are shown in 
Fig. 2 for fluid with Pr = 0.01 flowing in a long heated 
channel with the Reynolds number ranging from 100 
to 500. Note that the region on the left of a given 
curve is unstable for that case. The results indicate 
that the critical IGr/Re21 decreases with increasing 
Reynolds number. These critical values are much 
smaller than the value of critical IGr/Re*j for the 
appearance of flow oscillations from directly solving 
eq~tions (l)-(4), as will become clear later. These 
differences can be attributed to the finite heated sec- 
tion length in the direct numerical simulation and to 
the fact that the lower bound is predicted in the linear 
stability analysis (White [20]). 

- Pr=OOl 

OI 

-5 -4 -3 -2 -1 0 

Gr/Re2 

FIG. 2. Neutral stability curves for Pr = 0.01 with Re varied 
from IO0 to 500. 

RESULTS AND DISCUSSION 

The foregoing fo~ulation obviously indicates that 
the transient mixed convection in the vertical channel 
is governed by five nondimensional parameters. In 
this study, attention is focused on the effects of the 
Reynolds number and buoyancy-to-inertia ratio with 
the length of heated section L, Prandtl number Pr and 
wall-to-fluid heat capacity ratio A, respectively fixed 
at 10, 0.01 and 0. Both steady and unsteady mixed 
convection will be presented. Flow is steady at low 
buoyancy. Unsteady oscillatory flow prevails as 
Gr/Re* exceeds certain critical value. 

Steadyflow 
Results are first demonstrated for the flow at low 

buoyancy. Physically, it is expected that immediately 
after the sudden imposition of a constant heat flux on 
the channel walls at z = 0, the initially fully developed 
velocity profile is modified by the opposing buoyancy 
with the near wall flow decelerated and core flow 
accelerated. The temporal evolution of the flow and 
thermal fields for a @pica1 case at low buoyancy is 
shown in Fig. 3 through plotting the streamlines and 
isotherms at selected time instants. The plotted stream 
functions are -0.02, -0.01, 0.2, 0.4, 0.6, 0.8, 1.01 
and 1.02 and the isotherms are 1.0,2.0,3.0 and 4.0. In 
the early transient, the development of the isotherms 
close to the heated plate resembles that in boundary 
layer flow. However, its transverse diffusion is much 
greater than that of the fluid with a moderate Prandtl 
number owing to the high thermal diffusivity for a 
low-Pr fluid. So in a short time, the boundary layers 
over the heated plates merge (as shown in Fig. 3 with 
7 = 4.0 and 8.0). The distortion of the streamlines is 
slight and only observed downstream. At z = 12 a 
symmetric pair of weak recirculating cells are formed 
near the lower end of the heated section. When the 
steady state is reached as z 3 30, the cells are larger 
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8.0 

FIG. 3. Streamlines and isotherms at 7 = 4.0, 8.0, 12.0 and 30.0 with Re = 800 and &/I@ = - 1.0. 

but are still weak. These contours suggest that the 
transport of energy is only slightly affected when the 
flow is significantly modified by the buoyancy. 

The time variations of the velocity and temperature 
profiles at the exit end of the heated section (X = L) 
are plotted in Figs. 4(a) and (b) to illustrate the 
strength of the flow reversal and temperature non- 
uniformity. The results indicate that at t = 12 the 
reverse flow is already well developed. Moreover, the 
development of steady velocity and temperature pro- 
files from the inlet to the outlet of the heated section 
is shown in Figs. 4(c) and (d) for Re = 800 and 
Gr/Re2 = - 1.0. At the inlet (X = 0) the fluid still 
flows unidirectionally downwards. Then at X = 1.67 
the near-wall flow is almost stagnant and the velocity 
gradient normal to the wall is close to zero, indicating 
the vanishing viscous shear force. Besides, a significant 
velocity increase is noted in the mid-part of the chan- 
nel. Further downstream, a reverse flow appears in the 
near-wall region which strengthens in the downward 
direction. The steady temperature distribution is only 
slightly affected by the presence of the flow reversal. 
In fact, for X > 1.67 the (B-Q,) curves at adjacent 
positions differ from each other by a constant value, 
reflecting that thermally fully developed condition is 
already reached for X > 1.67. However, the flow is 
not hydrodynamically developed because the heated 
section length is finite, unlike that considered by 
Lavine 1141. 

After depicting the time evolution of the flow and 
heat transfer the effects of Gr/Re’ and Re on the steady 
temperature and velocity distributions are discussed. 
The effect of Gr/Re2 is examined first. The tem- 
perature and velocity distributions at the outlet of the 

heated section are shown in Figs. 5(a) and (b) with 
Re = 500. The results indicate that the outlet tem- 
perature increases slightly with the magnitude of 
Gr/Re’ (Fig. S(a)). We believe that this results from 
the stronger reverse flow at higher GrjRe’. The flow 
remains unidirectional when IGr/Re*I is below 0.6. 
The recirculating cell is larger at larger opposing buoy- 
ancy. In our calculations the steady state does not 
exist if IGr/Re2{ is above 1.2 with Re = 500. Next, the 
effect of the Reynolds number are examined in Figs. 
5(c) and (d). In the figures, the corresponding Gr is 
also indicated. The effect of the Reynolds numbers 
is rather pronounced, especially for the velocity pro- 
files. Note that the reverse flow is stronger for a high 
Reynolds number case with Gr/Re2 fixed. The re- 
sults in Fig. 5 clearly indicate that both GrjRe2 and Re 
have substantial influence on the mixed convection 
flow. This is very different from the mixed convection 
channel flow at lower buoyancy in which no flow re- 
versal occurs, and the flow is uniquely determined 
by the parameter Gr/Re (Aung [2]). A suitable mixed 
convection parameter for a recirculating developing 
mixed convection flow in a vertical channel remains 
to be found. 

Oscillatory jlow 
In this section, we describe the situation when the 

buoyancy force is high enough to exceed the critical 
Gr/Re2 so that the flow becomes oscillatory. As the 
critical Gr/Re2 is slightly exceeded, a periodic motion 
with a fundamental frequency and its harmonics is 
noted. With further increase in GrlRe’, a second fun- 
damental frequency sets in and a quasi-periodic flow 
is therefore obtiined. It is of interest to point out that 
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FIG. 4. Velocity (a) and temperature (b) profiles at the exit end of the heated section at several time 
instants; steady velocity (c) and temperature (d) profiles at various axial locations for Re = 800 and 

Gr/Re2 = - 1. 

in the initial transient, the flow is symmetric with 
respect to the center plane Y = l/2, but at a certain 
later time, sudden flow and thermal asymmetries take 
place, suggesting the occurrence of the symmetry 
breaking process which is frequently seen in many 
nonlinear dynamic systems [41]. 

Before describing the statistical characteristics of 
the oscillatory flow, we first illustrate the flow evol- 
ution for a case with periodic oscillation in Fig. 6 for 
Gr/Re’ = -3 and Re = 500. The stream functions 
are -0.2, -0.1, 0.2, 0.4, 0.6, 0.8, 1.1 and 1.2. The 
isotherms are 1.0, 2.0, 3.0 and 4.0 hereafter. Initially, 
at small Z, the opposing buoyancy induces a symmetric 
pair of elongated cells in the heated section. These 
cells grow and become more elongated and finally 
disintegrate, as seen at r = 12.182. Flow and thermal 
asymmetry is noted a little later (7 = 18.79). This 
breaking in symmetry can be attributed to the non- 

linear evolution of the extremely small asymmetry in 
the random disturbance added at the inlet. The cell 
disintegration and symmetry breaking processes gradu- 
ally propagate upstream. After a certain period of 
transient irregular oscillation, a period flow is formed 
at large 7. Figure 6 shows a few snapshots of 
this periodic flow for 7 = 80.298 N 83.428. The gross 
structure of the flow is characterized by a sinuous flow 
stream in the central part of the channel accompanied 
by a number of small recirculations adjacent to the 
walls. This resembles the flow in unstable plane mixing 
layer. 

To reveal the detailed fluctuation characteristics at 
large times, the time records of the axial velocity and 
temperature at two selected locations along with the 
average Nusselt numbers for the right and left plates 
are presented in Fig. 7 for Re = 500 and 
Gr/Re’ = -3. Also included in this figure are the 
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FIG. 5. The effects of Gr/Re* and Re on the temperature ((a) and (c)) and vklocity ((b) and (d)) distributions 
at the exit end of the heated section. 

FIG. 6. Streamlines and isotherms in the flow for Re = 500 and Gr/Re2 = 
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selected locations and the average Nusselt numbers ; (d), (h) and (1) illustrate the phase space trajectories 

at X = 0, S and 10 at Y = 0.141 for Re = 500 and Gr/Re* = -3. 
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corresponding power spectral densities and phase tra- 
jectories of U vs 0. The results in Figs. 7(a), (b), (e) 
and (f) indicate that the amplitude of the velocity 
oscillation is larger at the exit end of the heated section 
(X = IO), while larger oscillation amplitude in tem- 
perature is noted at the middle section (X = 5). This 

is the direct consequence of the quick establishment 
of the temperature field in the low-Pr fluid due to 
its high thermal diffusivity. Thus, the fluctuation in 

buoyancy force dwindles in the downward direction. 
The periodic motion is reflected by the sharp peaks in 
the power spectral densities. Specifically, there is one 
fundamental frequency at 0.32 and its harmonics with 
,f= 0.64, 0.96, and 1.6. The periodic flow is further 
manifested by the single closed curve in the phase 

diagram (Figs. 7(h) and (I)). The closed curve is 
denoted as a limit cycle in the study of nonlinear dyn- 
amic systems. The flow asymmetry discussed earlier 

is quantitatively illustrated by the unequal space- 
averaged Nusselt numbers for the left and right plates 
in Figs. 7(i) and (j). Finally. the flow at the inlet of 
the heated section, which reaches a steady state, is 
indicated by the presence of a limiting point in the 

phase diagram (Fig. 7(d)). 
Effects of the buoyancy-to-inertia strength are now 

examined. An increase of Gr/Re* from -3 to -9 
causes an earlier appearance of the flow oscillation 
and asymmetry. Besides, the oscillation frequency and 
amplitude is larger for a higher Gr/Re’. In fact, the 

fundamental frequency increases from 0.32 for 
GrlRe’ = -3 to 0.362 for Gr/Re’ = -6. An inspec- 
tion of flow formation discloses that the asymmetry 
appears at the same time over the entire heated 
section. However, with a lower Gr/Re’, the symmetry 
breaking starts at the exit end (X = IO). The two cases 
can be classified into two different kinds of symmetry 
breaking. Finally. it is interesting to note that the 
temperature increase is concentrated in the entry 
region of the heated section. 

Figure 8 presents the results for an even higher 
buoyancy strength (GrlRe’ = - 12) at large t when 
the initial transient has died out. Note that the flow is 
quasi-periodic at this Gr/Re’ with the presence of two 
fundamental frequencies, .f‘= 0.0875 and 0.199. The 
other peaks in the power spectral density are the har- 
monics of the fundamental modes resulting from the 
period-doubling mechanism [42, 431, as evident from 

0.80 c - Left 

E 

.- --~ Right 

1.00 L------ ---- 
40.00 60.00 60.00 LOO.00 

FIG. 8. Time traces of Nu, U and H for X = 5 and 10 at 
Y = 0.141 with Re = 500 and Gr/Re2 = - 12. 

teristics of the complicated aperiodic oscillations can 

be understood by checking the power spectral density 
in Fig. 9. Comparing the result in Fig. 9(b) with that 
for GrlRe’ = - 12 indicates that for GrlRe2 = -20 
the oscillations shift to lower frequencies with two 
fundamental modes at ,f= 0.085 and 0.142. Other 
frequencies can be represented by the linear com- 
bination of these two modes (Table 2). Besides, the 
peaks in Fig. 9(b) are broadbanded, reflecting that the 
flow is transitional. 

Now the effects of the Reynolds number are con- 
sidered. The time variations of U and 0 at two selected 
locations and NuL and NuR are shown in Fig. IO 
for Re = 1600 and Gr/Re’ = - 3. Contrasting these 
results with those in Fig. 7 for Re = 500 and 
Gr/Re2 = -3 indicates that at Re = 1600 the sym- 
metric oscillation persists for a longer period before 
symmetry breaking appears. A close inspection of the 

Table 2. The harmonics are the linear combination of 
the fundamental modes. The corresponding U vs 0 

Table 2. The fundamental and harmonic frequencies and 

phase diagram is no longer a single closed curve ; even 
their relations for Gr/Re* = - 12 and -20 

more, no obvious repetition is noted. The trajectories 
are similar to each other but never repeat. It is hard 
to precisely determine the margin of transition from 
single frequency to the two-frequency periodic 
motion. But in our calculation, we find that the second 
fundamental frequency sets in at Gr/Re’ about -9 
with Re = 500. 

A further increase of Gr/Re’ to -20 causes the 
flow to become nonperiodic from examining the time 
records of the velocity and temperature. Charac- 

GrjRe’ = -12 Gr/Re’ = -20 

f Cl C2 f Cl cz 

0.0875 1 0 0.0513 -215 315 
0.144 112 l/2 0.085 1 0 
0.199 0 1 0.142 0 1 
0.311 2 -1 0.195 9;5 3ilO 
0.394 0 2 0.257 0 3 
0.488 1 I 0.325 -912 5 

Note : f = C, 1; + C2f2. where ./‘, and f2 are, respectively, 
the first and second fundamental frequencies. 
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FIG. 9. Phase space trajectory of Li vs 0 and power spectral 
density of U at X = IO, Y = 0.141 with Re = 500 and 

GrlRe’ = -20. 

results suggests that the transient response can be 
roughly divided into three stages, i.e. symmet~c peri- 
odic oscillation, transition (or symmetry breaking 
as used earlier) and asymmetric periodic oscillation 
stages. At Re = 500, the symmetric periodic oscil- 
lation stage does not exist (Fig. 7(a)). Checking the 
flow evolution reveals that the cells grow and are sym- 
metrically broken with respect to the plane Y = l/2 
in the longitudinal direction during the symmetric 
oscillation stage. The greater the inertia force, the 
longer this stage. Immediately after the symmetric 
oscillation stage, small asymmetric disturbances are 
found throughout the domain. Then the symmetric 
flow is simultaneously broken down. Through an 
adjustment stage, we name it the transition stage, the 
asymmetric periodic flow is established. We only find 
a fundamental frequency when the Reynolds number 
is increased from 500 to 1600 as we already noted. 
However, only a slight difference is noted for the 

0.00 h,,,,,, 3 s 8 ’ a ’ J 
0.00 20.00 40.00 6O.QQ 

FIG. 10. Time traces of Nu, U and 8 for X = 5 and 10 at 
Y = 0.141 with Re = 1600and Gr/Re* = -3. 

fundamental frequency after the periodic state is 
reached. The magnitude of the oscillation increases 
with the Reynolds number. 

Finally, we represent the relationship of the effective 
heat transfer coefficient for the entire heated section 
vs the opposing buoyancy at large T with Re = 500. 
Since NE+_ may not be equal to=%,, we define the 
effective heat transfer coefficient Nu as the average of 
NuL and NuR. The states which possess no oscillation 
(i.e. steady), one and two fundamental frequencies are 
clearly distinguished by the dramatic changes of slopes 
in the curve. 

CONCLUSION AND REMARKS 

The buoyancy and inertia effects on a low Prandtl 
fluid flowing through a symmetrically and uniformly 
heated vertical plane channel is numerically inves- 
tigated. Linear stability theory was carried out and 
the opposing buoyancy is found to dramatically de- 
stabilize the flow. Then, numerical results were pre- 
sented particularly to illustrate the temporal evolution 
of the flow and heat transfer for stable and oscillatory 
situations. In addition, characteristics of the velocity 
and temperature fluctuations were examined in detail. 
The main results can be summarized as follows : 

(I) There exists a critical Gr/Re* for a specified 
Reynolds number. Stable flow results if lGr,/Re’[ < 
~Gr/Re2~cr,ticul. Otherwise we find an oscillatory flow. 

(2) After exceeding (Gr/Re2J,,,,ic~l, a fundamental 
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frequency sets in. Then two fundamental frequencies 
appear if Gr/Re’ is high enough. 

(3) The inertia force stabilizes the flow, but the 
opposing buoyancy has a reverse effect. 

(4) Symmetric and asymmetric oscillations are both 

possible in different transient stages. 

For a much higher Gr/Re2 (say, Gr/Re’ = -3O), 
the two-dimensional formulation is questionable since 
the flow becomes transitional and three-dimensional. 
This area is still left to be solved. 
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